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ON GRAVITATIONAL FIELDS IN RIEMANNIAN SPACES? 
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A rigorous foundation will be laid for methods of constructing gravitational fields in given pseudo- 

Riemannian spaces, particularly Minkowski spaces, with a natural alternative to the global law of universal 

gra~tation, while preserving its local consequences by analogy with local transitions from properties in 

Euclidean spaces to the properties of Riemannian spaces. There will nevertheless be strong differences in 

the characteristic relations in global senses. 

The essence of the theories developed here is that in topologically equivalent spaces one can use identical 

fixed coordinate frames of reference with individu~ly defined points. Specially introduced global 

Lagrangian comoving frames, in space or in mathematically defined model media, defined on appropriate 

families of time-like world tines L, at each point of which the three-dimensional velocities vanish, are of 

part&&r importance. These are coordinate systems in which all individual points of the model spaces or 

media are at rest, with changes occurring onfy in gfobai time, which on the world lines of the family is 

identical with proper time. 

Inertial frames of reference-generally local Cartesian tetrads S which, at each point on t, serve as a 

basis for the introduction of a variety of a~gebraicaIiy and different~aily defined mechanical characteristic 

quantities and, in particular, tke four- and three-vectors of absolute velocities and the corresponding 

absolute accelerations are also of particular importance. These are all fundamental concepts, in terms of 

which one formulates the basic definitions of mathematical and physical models. 

It wih be shown that for free ~ravitationai motion of material media, subject onfy to forces of inertia and 

body forces-including in particular, gravity-mechanical laws and mechanical phenomena are described in 

identical terms in comoving coordinates, on the one hand, and in the special frames of reference on the 

other. 

In free fbght in space, internal motion within the ,~tronaut~s cabin, which takes @ace under conditions of 

weightlessness, is therefore described locally in exactly the same way as the analogous mechanical 

phenomena in inertial systems, where there are no gravitational forces acting on the particles of the 

medium, as they are cancelied out by forces of inertia. Now this is the situation, in the same sense, both in 

Newtonian mechanics and in alternative relativistic theories, taking potential energy into account. In 

general relativity theory (GRT), changes in potential energy, due to changes in the positions of bodies in 

curved space, are completely eliminated by a suitable choice of a pseudo*Riemannian space. 

We shall establish general properties of gravitational fields in ~eudo~Riemannian spaces. In particular, 

we shall show that the density and potential energy of gravitational fields in comoving Lagrangian 

coordinates along world lines of the family L are constant, though they may differ from one world line of f, 

to another. This is true not only in Newtonian mechanics but also in p~ud~Riemannian spaces. 

As we shalt see. in relativistic theories it is always necessary to use the law of universal gravitation or 

some alternative to it due to the additional specification concerning geometrical aspects of pseudo- 

Riemannian spaces. 

It should also be stressed that different choices of the family of world lines L and the presence of point 

singularities in the field may welt cause some solutions of the tensor equation of GRT in a region of empty 

space to clash with the law of universal gravitation. The same is true of the expressions for the potential 

energy corresponding to these solutions. 

Our main result will be to demonstrate that one can use theoretical sohttions of problems in Newtonian 
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mechantca ln comoviny frames of rcferencc (or on the hais 01 the data <)f mcasuremcnt\ c‘.tt rrcd tout ~)n 

instruments mounted on moving objects) C’omputational methods (II’ in&al navigatton rheory in 

Riemannian spaces can be used to construct :I complete soiution of problems involving the dctcrmitxrtton oi 

the metric and laws of motion of bodies in given ~~scud(~-Ri~m~nni~~n spacca, for arbitrarily @en ohsccvcr\. 

‘T‘hc agreement between GRT and Newton‘s theory (in the basic approximation) ih due I~I oh: fact that 

over short time interval? planetary orhlts arc almost straight 11nc\ in Euclidean space llr Schwar7schtld 

geodesics. 

1. TtiF. CONsrKuCTIoN of models for gravitational fields will rely on the fundamental variational 
equation f l-41 

6 j AdV, +sw* +sw=o 
V4 

which expresses the universal thermodynamic principles of physics and encompasses all possible 
hypotheses concerning interactions in model media, based on experiment or observation. for 
various kinds of natural or artificially created or projected phenomena. 

The fundamental equation, considered in appropriately specialized formulations for special casts. 

as applied in analytical mechanics to obtain three-dimensional equations, is in complete agreement 
with a variety of logically postulated and accepted “variational principles”. At the same time. it 

enables one to formulate not only the three-dimensional Euler equations, but also to derive 
equations of state for internal interactions in various kinds of models of material bodies or fields. 

Thus. the basic equation provides a point of departure for deriving a closed system. jn~lud~ng ail 
necessary equations and characteristic conditions (initial data, boundary conditions, etc.). The 

principles of model construction are related to the postulation of Lagrangians AdV, and appropriate 
terms in 6W*) representing the total local energy of the model, expressed in terms of a system oi 
characteristic defining parameters. 

In accordance with the main, well-tried scientific ideas of model construction in a variety 1,,1 

physical fields (though not all), one can postulate that the total elementary energy AdV,I and global 
energy Jv,RdV4 can be expressed as the sum of different forms of energy, whether of the same ox 
different natures, which may be converted into one another in the phenomena under study. 

Further constructions are based on several ideal notions: 

1. a four-dimensional pseudo-Riemannian space, defined when investigating GRT, or prescribed 
in advance when the problem is set up, such as Euclidean space in Newtonian mechanics or. fat 
example, Minkowski space in special relativity theory (SRT) or certain other Riemannian spaces, 
including Schwarzschild spaces, etc.; 

2. a moving continuous medium, as a physical model with individual elements. say. with intrimir 

masses dm = const; possible generalizations in which dnr is allowed to vary. though not out of the 
question, will not be touched upon in the theory developed below: 

3. a gravitational field, generated by a mass distribution with density p or-for tieIds correspond- 
ing to media-comprised of elementary objects distributed in a continuum. with dwr = 0 but 
possessing momenta and energy characteristics for gravit~iti~~nai fields generated by charges and 

magnets. 
Each of these positions involves different assumptions, some of which are already universaliy 

accepted in macroscopic scientific theories. while others are new. 
Below we will consider non-linear relativistic theories of gravitational fields and Laws of motion of 

material points as elements of a certain family of world lines I, in Riemannian spaces, where the 
latter are either to be determined, or prescribed in advance as carriers of gravitational Iields 
generated by distributed masses, with distributed energy of test particles for the scalar characteris- 
tics of the field, and, in particular, with universal fixed Riemannian spaces, selected in advance. as is 
assumed for Euclidean space in Newtonian mechanics or. as we shall show, in SRT for Minkowski 
space or in GRT after the approximate solutions have been replaced by exact solutions in the 

formufations of the problems (for example. the use of a fixed Schwarzschiid space in the theory of 

planetary motion around the Sun). 
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We will now outline the basic definitions of the characteristic parameters in the expressions that 
represent different forms of energy in volumes of the Riemannian spaces; in particular, we shall 
introduce the concept of gravitational energy. 

Introducing volume integrals 6Jv,AdV4 for the total expressions of energy variation in four- 
spaces, we let V, denote an arbitrarily chosen substantional invariantly defined four-dimensional 
volume in Riemannian space. Accordingly, we have an invariantly defined four-dimensional 
element dV4 = dV3 - do. For the continuous medium under consideration, dV3 denotes an invariant- 
ly defined infinitely three-dimensional volume element (a particle) and dr a time-like element in the 
non-holonomically distributed volume dV3 , and r denoting proper time, defined globally in the 
relevant system of preassigned or unknown world lines L for individual points, with equations 
5” = const, (01= 1, 2, 3), for which we introduce, without loss of generality, comoving Lagrangian 
coordinates ([l, p, [“, T) and canonical metrics in the form 

ds* =c2dr2+2g,,(~7,7)df’Yd7+g,p(~r,7)dEQd~~; a,P= 1,2,3 

(It should be noted that one cannot in general use the global equality V, = 7V3 with finite or infinite 
volumes V, and V, for finite or infinitesimal values of r.) 

We will now give a few definitions. 
As frames of reference we shall use local inertial tetrads S at each point, on L we have 

ds* = c*d? = l*d$, where 1 = qc is a long distance, q is some characteristic time constant, and 5 is a 
dimensionless time coordinate. At the points of the world lines L we have the following formula for 
the four-dimensional velocity: u = dsldr = E with 1 c 1 = const; the absolute acceleration is a = du/dT. 
We will define the concept of mass density by p = dmldV, , where dm is the element of rest mass for 
an individualized volume dV3 in the local inertial tetrads along the world lines L. 

Fundamental physical laws are established and formulated in terms of local inertial tetrads S with 
constant bases ei, as frames of reference with locally defined coordinates xa along world lines L and 
global time T in the canonically defined comoving metrics indicated above; one also uses the 
concepts of velocity and components of absolute acceleration, for which the following formula holds 

o,=c&4(.P,7)/ar, a4 =O; 01,~ 1,2,3. 

Note that in comoving coordinates along an arbitrary but fixed line L with 5” = const, the 
coordinate r is proper time. 

In any coordinate frame x ‘, x2, x3, r’, the equation of each individual line L* in the specified 
space may be written as a coordinate transformation 

xQ=fQ(k1,[*,&Y3,7) or E’=&?(x’,x*,x~,~) (1.1) 
and r’= r; a!= 1,2,3 

which preserves the invariance of the comoving metric of the pseudo-Riemannian space, generally 
speaking, only in an infinitesimal neighbourhood along L; however, the totality of all transforma- 
tions of this kind on different world lines L, with difference functionsf”, will not generally form a 
unified frame of reference for the same Riemannian space. 

We will now consider a certain line L* in isolation; suppose that at each of its points we have a 
system of variable bases Ei, defined in terms of the components of the metric tensor 
gij(t*, r) = (&i&j) and the Christoffel symbols 

pe 2% 
P4 

=;g”( PS + ag4s agP4 
atq atp ap 

> 

These bases satisfy the following formulae 

a&i aq -= F:~@)E~, or -= 
a,? ark 

r;k (x%s 

s, i, k, r= 1,2,3,4 

On the world line L*, apart from the basis Ei, we also introduce inertial tetrad bases ei , such that 
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E, = E! or ei # F; at the point under consideration; however, as functions of x’ and <’ these bases arc 
constant at each point of L* 

&_ aei -.-.-=o; 
a.$” axk 

i,k=1,2,3,4 

All the Christoffel symbols vanish for such inertial bases e, Obviously, using the transfornlati~~n 
laws for Christoffel symbols along L”, we thus obtain the following formulae for the functions 
X cr($y. 7) 

-- (1.‘) 

These formulae, considered as equations, essentially determine the functions (1.1) only along world 
lines L*. Moreover, they are not integrable in finite volumes of the Riemannian space, since it i?: 
usually not possible to introduce Cartesian coordinates in Riemannian spaces. with the exception of 
Minkowski spaces. 

In Newtonian mechanics and SRT one can in fact define a transformation x” = x”(~, ~j-) and I’ = 7 relative ttl 
which Eqs (1.2) hold globally. In Riemannian spaces such a global transformation may also be introduced, but 
then it may happen that Eqs (1.2) are satisfied only on an isolated. though arbitra~ly specified. world line 1,. 

For each arbitrary line L*, a transformation (1.1) also exists in the comoving coordinate frame 
known as the Fermi frame; in variables xi on L* we have I$,(.x y. T) = 0, consequently. ag;,(s “. r)/ 
Ilx ,( =1 0. 

In the coordinate frame xi we may assume that, to within higher orders, the elements c/V3 in 
tetrads S for different points of L* are identical in the limit. 

Indeed, it follows from the equation of continuity in the Fermi frame .Y’ along any world line 1. 
that 

apu’+_+ afd apt43 api 
t-=0 

axi ax2 ax3 ax4 

In the comoving coordinate frame, when 11’ = 1 and rd iv = 
variables xi and in the variables 5” with bases ei = const. 

0 on L*, we obtain: ~~/~~ = 0 both in 

In addition, it follows from the equation of continuity that 

pdV, = dm a 1.3) 

identically along world lines L with different dm and p but with kinematically identical riV.; at all 
points of the Riemannian space for identically introduced tetrads S. 

It follows from (1.3) that the invariants p(,,,,, dV, and dm thus defined on comoving lines I. 
depend only on the three arguments x ’ , x2 and x3 or on 5’. p, e’along the line L. but not on proper 
time 7 along L. 

On the other hand, from the point of view of the reference frame of an arbitrariIy specific 
observer in the same space, with other coordinates ?I’. n2. $. T’+T, it is essential that these 
invariants depend on all four variables. 

In the comoving reference frame, individual mass particles are in a state of relative rest, in which 
only time is changing; relative to the inertial reference frames for individual points. however, the 
motion of the particles is generally accelerated. On the other hand, in free motion of the particles, 
under the sole influence of body forces of gravity, these forces are completely cancelled out by the 
forces of inertia; particles at rest relative to the comoving reference frame are in a state of 
weightlessness, similar to the rest state of particles relative to the Fermi local inertial reference 
frames. All this explains why it is necessary to use canonical comoving coordinate frames, 
particularly in the theory of gravitation, which involves only body forces of gravity and forces of 
inertia. 

If the problem in question involves the determinatjon of quantities of various types in preassigned reference: 
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frames in globally defined ftxed spaces, then transformations of the solutions from the comoving reference 
frames to the preassigned frames result in a problem in the theory of inertial navigation. 

We have published a solution to such navigation problems for Riemannian spaces. Solutions expressed in 
Lagrangian coordinates may be carried over to an arbitrary prescribed metric as a reference frame in a given 
Riemannian space in GRT, using the algorithms of inertial navigation theory published in 1976 [5]. Different 
versions of inertial navigation theory for specific bodies in a Newtonian framework were first worked out in 
Tkachev’s doctoral dissertation in 1944 (see also [6]). 

In experiments or in automatic devices, it is natural to mount measuring instruments on moving bodies and 
thus to obtain measured values of the quantities that characterize moving individualized objects in Lagrangian 
variables. 

We must add that the ~ndam~ntal physical laws derived or verified in expe~ments are usually formulated for 
individually defined model objects. 

2. We will now list the elements of variable energy in our models, for a Riemannian space and for 
a material medium with moving elements individualized by means of the coordinates [‘, 8, s3, r of 
particles of the medium with masses dm. 

In accordance with our fundamental assumption, we define the elementary energy in a volume 
integral with respect to a substantial volume V, as the sum of the different forms of energy in the 
elements dV4 of the fmite volume V,. We will be governed in this respect by various scientific ideas 
from applied theories that have been found to agree with experiment in the mechanical contexts 
considered here. 

Expe~mentally confirmed and proven theses dictate that we use four-dimensional pseudo- 
Riemannian spaces with signatures “- - - +” and take the expression 

(2.1) 

as the variable energy density of a geometrical volume element dV4 due to the Gaussian curvature R 
of the Riemannian space. (A similar definition of energy, maintaining its scalar nature and linking it 
to the curvature of continua, whether as a function of the curvature itself or generated by variations 
of curvature, may be found in elasticity theory.) 

The coefficient k = 8rrG/c4 = 2.1 x lo-48 sec2/g cm is the “gravitational constant”; G is the 
empirical constant in Newton’s law of universal gravitation. The small factor Z&c4 arises from the 
requirement that GRT and Newtonian theory agree in the limit for free motion of individualized 
material points in a vacuum over short intervals of time-where GRT assumes the motion to take 
place along geodesics, and Newtonian mechanics views it as accelerated motion for small 7 and small 
three-dimensional velocities. 

It is obvious that if R/(Zk) is finite, then the Gaussian curvature R and the important combination 
Rq- %giiR in the field equation (2.10) (see below) are very small functions of points in the 
Riemannian spaces; in GRT, in four-dimensional volumes of empty Riemannian spaces, the 
“gravitational constant” k is assumed to have no effect on the equation of motion of material 
particles in a vacuum. Nevertheless, the influence of k still manifests itself in the characteristics of 
singular points and in the boundary conditions. 

In generalized models of GRT, k may be defined as a variable physical parameter; this was indeed 
proposed by Dirac in his lecture of August I975 in Australia [3]. 

In a moving matter model, the scalar mechanical the~odynamic energy, which depends on the 
masses of the particles in the medium, is defined as the sum of the energy elements of the masses in 
the medium, given by the formula 

pgi~t~‘uidV,dT= dmc2dr (2.2) 

which, in particular, generates a body force of inertia in the Euler equations with dm = const. 
It is taken for granted here that the energy of a particle, as such, is independent of the position of the particle 

in space. Experiments in Newtonian physics, however, have shown that in the presence of a gravitational field 
one may-and shouhi-also introduce the potential energy of material points in a body as a function of their 
positions. 



A unique feature of GRT is that it does not assign a potential energy, dependent on position, to masses: 
instead, it assumes certain effects due to the curvature of space. Newtonian mechanics takes potential energy 
into consideration explicitly, which is quite natural. This repIacement of the potential energy of a position by 
geometrical properties of four-dimensional space greatly complicates the mathematical and physical aspects ot 
the possible limiting transition from GRT to authoritative Newtonian mechanics. 

At the same time, these complications in GRT generally make it impassible to proceed in the hmit from 
GRT to Newtonian mechanics over long intervals of time. 

The following considerations are basic. In a fixed ~i~rnan~ian space there are various possible 
motions of material media and various fields, incIuding gravitational fields. generated only by the 
distribution of moving masses and their velocities or of massless particles possessing energies and 
momenta, or by the corresponding elements of the media, which possess charges and magneti~tio~~ 
when electromagnetic forces act on the test particles. 

The potential energy of the fictitious state of rest of the elements of a continuous mass distribution 
in volumes V, of a gravitational field is defined by the formula 

where the scalar function of the coordinates U{$) = U(s’) is the specific potentiat energy per unit 
test mass induced by the field; this energy is assigned to the elements of the material medium as a 
function of their positions in space. 

It is of great importance that the total potentia1 energy of the points of a gravitational tieId, as a physic& 
characteristic of the field for individual points of the space, is proportional to the masses of the test particles, 
which may differ for a fixed function U of the coordinates. We stress that in analytical mechanics of systems 
with a finite number of degrees of freedom the potential energy always occurs in the equations and is directly 
involved in the Hamilton variational principle. Under general conditions, the mechanical characteristics of 
moving systems depend on the geometry of the space; at the same time, one postulates that the ~~~te~~ti~~l 
energy of the gravitational field or the Gaussian curvature of the Riemannian space, which occur in the energy 
formula (2.8) (see below) in specified spaces, may be treated, respectively, as due both to the curvature of the 
Riemannian space and to the presence of a gravitational field with the variables generated by the body forces of 
gravity. which are defined in general cases in terms of the scalar functions U(p, 7) = V(Z”_ I). 

In GRT, energy effects are generated by the curvature R in the absence of the term (X5), but ~c~r[~~~i~tn 
physics attributes them sotely to the acceleration of the gravitational force, g = - gradti. in a two-dimension~~l 
Euclidean space. Our formula (2.3), with the total derivative dtildr in place of simply t’. is motivated by the 
model requirement that the specific potential energy U be single-valued as a function of the points of the 
Riemannian space. 

We emphasize that the scalar field U. which has the dimension of velocity squared, appears only when there 
are particles (elements of the medium) present in the field that possess masses or momenta in the form of their 
energies and body forces of gravity. 

The specific gravitational energy per unit mass, for an in~nitesimai particle moving in space and in 
time, occurs through the differential dU = U(F) - U(P), where P’ and P are adjoining positions 
occupied consecutively by distinguished elements of the medium. In the continuum theory, this 
formula, as written, ho@s for the motion of a particle along its world line L, in any coordinates .C 
and formula (2.3) may be written in the form 

dU dU au au au au 

pzdv4=dm 
----&=d~ ( -dx’ +---- 

dr ax’ 3X2 
dx’ +----- 

ax3 
dx3 + --ddr) (;?..a) 

37 

When dealing with gravitational fields in various models of moving media or variable fields, one 
must also introduce, besides the energy elements (2.1)-(2.4), an analogous form of energy. ii”’ 
generated in the general case by internal and externaf surface forces of interaction. This energy is 
measured per unit mass &n or unit three-dimensional volume & ‘> of the moving medium of the 

field; it is represented in A by terms of the form 

The function U” depends on additionai physical and mechanical parameters gLx of a scalar and 
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tensor nature, on given or unknown characteristics. In particular, one may also require the 

imposition of various constraints, which accordingly introduce added terms in the Lagrangian with 
Lagrange multipliers hp. 

The scalar energy component (2.5) represents the densities of different kinds of physical energy of 
a thermodynamical nature or special external constraints in internal processes in elements dV4 for 
the volume of media, fields and world lines under consideration, due to the introduction of 
additional mathematically motivated constants or variable parameters pk or combinations of such 
parameters with mechanical parameters and their derivatives with respect to the coordinates and the 
time 7. (For example: temperature, the components of the strain tensor and moment characteristics 
in elasticity theory, electromagnetic effects in radiation or chemical and nuclear reactions, etc.) 

In relativistic theories, as in Newtonian physics, terms involving Ufconst and U* lead to families 
of world lines of motion of individual points L with absolute accelerations that may be non-zero. 

Besides the energy components (2.2), (2.4) and (23, the volume integral for the total energy will 
also include an invariantly defined divergent term 

CZ 
-vtViUdV4 =-4G (div grad U)dV, 
47v 

(2.6) 

where c2 and y are dimensional constants; y is introduced in order to assure that the various terms in 
the sums representing the Lagrangian will have the same dimensions. 

In view of the dimensional relations [k] = T*/(ML) and [r] = L3/(MT2) and the conclusions of the theory 
developed below, the agreement between Newtonian mechanics and experiment implies that one can take 
y = kc4/(87r) = G, where G is the gravitational constant in the universal law of gravitation. 

It is obvious that the divergent term (2.6) has no effect on the Euler equations for the variations 
&ij and 6~‘. 

The local energy (2.6) arises from the work of external gravitational forces on the boundaries of 
the finite volume V, which occurs in the basic equation in the term 6W now being defined, which is a 
surface integral over the boundary C of V, (to be precise, a three-dimensional surface integral, once 
the divergent term in the volume integral has been transformed to an integral over the boundary of 
Vd). This gives the following expression for the surface force per surface element dx due to the 
component (2.6) 

CZgrad UndZ 
4rry 

(2.7) 

Each of the constituents described above involves assumptions, some of which are already 
universally accepted in scientific macroscopic versions of GRT, but the terms (2.4), (2.5) and the 

terms of the form (dU*ld~)dl/, and (2.6) in the expression for AdV, in a Riemannian space have 
been added here. 

In classical theories, in the case of reversible conservative models with gravitational fields and 
Riemannian spaces, it is taken for granted that SW* = 0, and if U* # 0 one can limit consideration 
of the volume integral in the basic equation to the following expressions 

t$l- AdV, =6,1 [- $ dV4 + pg,p ‘u jdV4 + dmdU t 
2 dU’ 

-V ‘ViUdV4 t - 
4 4 47v dr 

dV41 (2.8) 

For individual particles, the condition dm(ty) = const may be viewed as a constraint, correspond- 
ing to the hypothesis of mass conservation for different variable three-dimensional volume 
elements-the particles in the models of gravitational fields that we are constructing. The variation 
symbol 6 represents only the replacement of real increments by conceptual, virtual increments, with 
allowance for the constraints dictated by the formulation of the model theories. 

Writing formula (2.8) in an invariant form in the comoving coordinate frame, one can evaluate 
the infinitesimal variations by subjecting the space itself to geometrical variations and considering 
the properties of the relevant world lines L. When the variation is applied, one should consider, 
besides the comoving reference frame in variables 5” and 7, also the locally defined inertial reference 
frame of the observer with transformed variables x (I, 7 
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The variations 6x a, 6r and St”, ST represent arbitrary virtual (conceptual) infinitesimal deviations 
of the quantities in question from their (unknown) real values, where the latter are to be obtained 
by solving the mechanical problems under consideration. 

It should be pointed out explicitly that in every fixed Riemannian space, whether given or to be 
determined, U may be a different function of the coordinates, depending on the problem being 
treated. 

The determination of U as a function of the mass distribution p is governed by additiona 
assumptions, all arising from the law of universal gravitation. Accordingly, al1 other things being 
equal, gravitational fieids may take different forms in the same Riemannian space, just as in 
Euclidean space in Newtonian mechanics. 

The deviation of the volume Euler equations as coefficients of arbitrary variations 69,, yields the 
field equations; variations 6x U, 6~. however, lead to the equations for the world lines L. which are 
actually local laws of conservation of momentum. Clearly, the last term but one in the integral (2.X). 
which is of divergent form, transforms into a surface integral for 5W over X and therefore does not 
influence the Euler equations for the field or the equations of motion. However, the solution of 
specific problems relating to the equation of state, which appears in the boundary and initial 
conditions, is also affected by the divergent terms in the expression for A. 

If the condition U* = const is not assumed, the volume field equations, obtained as coefficients of 
the variations &ii, are determined only by the first two terms in formula (2.8) and, as is well known 
and indeed obvious, these equations may be written in the form 

R ii _ yLg’iR = kpU iU 1 (2. i0) 

In empty spaces one hasp = 0, implying the following equations for volumes in Riemannian space 
geometry which are not directly distorted by the presence of various objects and events 

Rii_l&'iR=O (2.11) 

and consequently R = 0 and R, = 0. 
In that case the Riemann tensor is equal to the Weyl tensor, and Eqs (2.11) have ;t large set of 

different solutions. 
The solutions of the field equations (2.11) are adapted to specific situations by imposing 

additional conditions, under which these equations have unique sohttions. Such conditions may 
reduce to the specification of families of world lines L and of singularities at isolated points for types 
of solutions with matrices K in the sense of Petrov. They are determined using canonical 
three-dimensional symmetric matrices M and N in the orthonormal tetrads S, expressed in terms of 
the roots A, = -(czY f ips) of the “secular equation ‘* of the six-dimensional matrix K, whose entries 
are the components of the Weyl tensor.: 

The possible distributions of these roots as functions of the points of the space are estabiished 
using the Rianchi identities. One constructs solutions of the problems that arise with families of 
world lines L that correspond to the metric of the Weyl tensor in the comoving systems of Lagrange 
coordinates, in the fundamental spaces determined from Eqs (2.11) as functions of the accelerations 
on world lines L. These in turn are determined as functions of the distributed density of matter p, 
whether prescribed or to be determined, in other regions in the space determined by the solution Of 
Eq. (2.10). 

In the problem thus stated, relying on the basic equation taking into account the thermodynamic 
energy U * per unit volume dV3 , we can write for variations Sx u, 8T 

dV, =0 
I 

(2.12) 

t See SEDOV, L. 1.) On the properties of invariant components of the Riemann tensor for T,, = ~g,, that follow from the 

Bianchi identities and the equalities a, + CQ + a 3 = K and p, +&+ p:, : 0. Preprint. Institute of Mechanics, Moscow State 

University, 1992. 
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The differentials d7 occurring in dV, and in dU/dr may be replaced, essentially without 
after-effects, by dT/q, where q is any scaling constant with the dimension of time. The quotient 
dT/q = di’ may be introduced directly as an invariant global abstract time coordinate on the family 
of world lines L. Consequently, the terms dmc2di’ and dm(aU/W)df’ have the dimensions of 
energy, in keeping with the physical sense of the basic variational equation. 

The scalar relationship (2.12) can be written in more detail in the comoving reference frame, in 
which the world lines correspond to the global proper time coordinate T. In that connection we point 
out here the following starting formulae in the variabIes 5” and T, which also hold in the variables 
x “($“, T) and 7 (for c = 1) on the world lines L 

u4=f, ul=u2=u3=o; u4=1, llDt=Ukgka=g&@,?) 

where, since giju’d = r+d, before varying x a and r along L, we can write 
du. 

2 (U,UJj& =--$- 
du j du, 

dxitui-dv+---dx Y 
dr dr 

pd V, = dm = const 

because in the canonical comoving coordinates, everywhere and always, we have u4 = 3, LP = 0, 
Q= 1, and 

(2.13) 

where a, are the components of the absolute acceleration at the points of the coordinate time world 
line L. 

Now, using (2.12) with Urn = 0 (only gravitation present), the variation of (2.12) for a small test 
mass becomes 

dm(a,Sx~+SU)=O or 

(The expression for the varied first term when dm = cons& which is ~~~~~~~, is quite well known.) 
Hence one immediately obtains the fundamental equations 

0, =g, = - X!/&P and aU/& = Q (2.14) 

Written differently, in three-dimensional vector notation, we have a = g and g = -gradU when 
a Ular = 0 or U (xi, x2, x3), and the derivative of the potential energy U per unit mass on world lines 
L (orbits) must vanish: alJ/ar = 0. We have thus shown that the characteristic of the potential 
energy of dm particles-elements of the medium introduced by Eq. (2.3) depends only on the 
variables x1, x2, A?. 

If X@ = l”, then, in the comoving coordinate frame, in which 4” = const on world lines L, we 
obtain U = U@> B, c3”> (the global equalities U(x’, x27 x3) = U(,s’, l”, c3”, arise from the use of 
inertial tetrads S, which are constant at each point of the world lines L). Hence it follows that in 
regions of empty space at different points of the same world line L, U has a constant value but, as a 
rule, will take different values on different Ls if HJ/&f”#O for a, = 0. 

In that case, Eq (2.14) shows there must be a gravitational field of accelerations, and therefore the 
orbits L in the Riemannian spaces will not be geodesics. 

The situation we have just described seems at first sight to be paradoxical. However (e.g. in 
particular, in Newtonian mechanics), it is perfectly clear that in the comoving coordinate frame S”, T 
of Earth the field of gravitational accelerations generated by the Earth is stationary, but it is not 
stationary in the Copernican frame y*, r’ associated with the Sun. 

This example of describing the motion of a planet in the coordinate frame ~9 I’ indicates the 
existence of possible gravitational waves, perturbed by moving masses, which propagate at arbitrary 
velocities less than c. 

The above conclusions are quite obvious if the Ear& is treated as an absolutely rigid body, but their v&&y 



for deformable systems, when the components of the metric in the comoving metrics depend on the ttmc ; 
stems from the fact that individual points in the ~orrespo~~din~ reference frames maintain a state of rest. who+t. 
main mechanical characteristics, according to the formulation of the problem, ;IK the crtnstanr corncl\~in~ 
coordinates 5” = const. 

The model concepts and the resultant constructive theorics for the systematic and effective descriptictll ot 
events in natural science and technology, as developed in Newtonian mechanics, arc tremendous scienrilic 
achievements. In many cases they attain an extraordinary degree of accuracy, sufticient to represent rcalitl; II: 
many situations; at the same time. they furnish a solid base for further gen~rali~a~i~~rls of the f~~ild~~in~1~~~~~ 
model concepts in relativistic theories. 

Naturally, further improved versions of the Gentitic theories. aimed at accounting for erperimental cttt~l~ 
that contradict Newtonian mechanics. may be created in the lirst instance by modifying on~“r cc,ncept\ of >I>it<L. 
and time. For example. one can introduce a four-dimensional pseudo-Riemannian q~tct~. which baGr!l\ 
retains the cardinal ideas of the field of gravitation and its characteristic features. 

3. According to Newton, UfO in Euclidean space. but in GRT. as a rule, the ~c;tIar 2urvalurC R 

or other invariants of the Riemann tensor may be non-zero. However. atly limiting procedure 
leading from GRT to Newtonian mechanics must result in K = 0 and K,,hi = (I. 

In the previous sections we outlined a relativistic theory in which, on passing to Newtonian 
mechanics, one obtains U # 0, so that near the limits UfR/(2k): in particular. in Schwarzschild 
solutions R = 0. 

in the comoving Lagrange coordinates, there is for every individualized point (particle’) ;i 
corresponding rest state, while the assigned masses dnr and elements of total specific energy I/,) ;W 
constant on L. (In rocket flight, when allowance is made for various radiations. nuclear reactions. 
etc., further complications may be necessary in the theory. which must :tdopt appropriate 
hypotheses or laws for the variable quantities dm and U,, [7].) 

In general cases, however, in canonical c(~rn~~ving coordinates for Riemannian spaces. on passing 
from a line L to an adjoining line L’ one has 

U’ - U f 0 and W/ak_” 20 ii ii 

and, by Eq. (2.14), the absolute acceleration g relative to the inertial tetrads will satisfy the formuia 
g = -gradU. 

Proceeding as in Newtonian mechanics. one can also obtain a momentum equation for celestial 
mechanics. 

Since the world lines L in GRT are geodesics. it follows that g = 0 in GRT, and therefore U,, 1s ;jn 
absolute constant in volumes of empty space. 

On the other hand, we know that in GRT the integral (2.X) does not contain terms with 
~(~~/~~)~V~, which is the same as saying that U has a constant value at all points of a volume of the 
Riemannian space. As GRT does not allow for interactions among the planets, this fact imposes a 
significant restriction on the form of the possible orbits L in the Schwarzschild field. 

In Riemannian spaces, when the energy-momentum tensor is non-zero, the specific energies 1; 
and U” in (2.3) and (2.7) are generally also non-zero, while the relevant world lines in the family f, 
in the canonical comoving metric correspond to accelerated motions of the individual points of the 
moving medium. 

Thus, in general situations, in the Riemannian spaces to he defined in GRT, the comoving world 
lines possess acceleration, and forces of inertia therefore arise as reaction forces of the spaces. 
analogous to the forces of inertia that appear in Euclidean space in Newtonian mechanics. 

The preceding conclusions indicate that the approximate solutions in GRT or in relativistic 
theories in general. like the exact solutions in specified spaces, possess a remarkable property: the 
free motion of an individual material point-test particle-in a gravitational field is independent of 
its mass. 

It should be clear that the validity of the notion “individual point ” is connected with the admissible and 
accepted modekng in the theory proposed here. For example, in many (but of course not all) situations. the 
Earth, or even any star, irrespective of all its manifold internal pecularities, may be treated as a material point. 

The theory developed here holds for any given family of world lines L. In that case, however, it 
follows from Eqs (2.14) that 
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a,dx" = 
au 

--&cLr”= 

axa 
- d&x’, x2, x3) (3.2) 

Consequently, the momentum equations (2.14) may be viewed as conditions for integrability of the 
differential form a,& a, where a is the absolute acceleration at the points of the family of world lines 
L, on which the accelerations must possess a potential U(X’, x2, x3). This is equivalent to assuming 
that there are no vortices in the family L or in the gravitational field; this follows from the axiom 
that the gravitational energy is a scalar, as represented by the fact that U depends only on the 
coordinates and figures in the basic formula (2.8) for AdVd . 

When formula (2.8) contains a term with U*, which depends not only on the coordinates but on 
other arguments with tensor and scalar thermodynamical parameters, Eqs (2.14) and (3.2) will 
generally fail to hold. 

In Newtonian theory and the relativistic theory of gravitation discussed here, Eqs (2.14) and 
(3.2), which guarantee better agreement with observations and specially set-up Newtonian 
experiments, should be retained. However, the main point of the more accurate modelling 
approach is that it incorporates the transition to observers in a four-dimensional pseudo-Euclidean 
Riemannian space. These relationships still allow one very considerable freedom, thanks to the 
choice of the potential U(xl, x2, x3 ). 

Given an arbitrary potential U in a pseudo-Riemann~an space, one can use Eqs (2.14) to determine the 
family of world lines L. It is clear, however, that the resulting mathematical solution will not always correspond 
to reality. For example, in Newtonian mechanics, if one chooses a function U for the gravitational field that 
does not satisfy Poisson’s equation, the results will disagree explicitly with experiment. 

An obligatory condition for determining U in Newtonian mechanics is the law of universal 
gravitation; allowing the absolute time parameter 7 to be variable, this law may be written locally in 
any system of three-dimensional coordinates x a or 5” as Poisson’s equation 

AU=V@v,U= -47rpG (a~= 1,2,3) (3.3) 

It is a familiar fact that any solution of Poisson’s equation for U, given the dependence of the density 
distribution p in three-dimensional volumes of Euclidean space, is an equivalent exact formulation of the law of 
universal gra~tation for the magnitude of the specific mass energy of the gravitational field. In keeping with the 
meaning of the definition of Riemannian spaces, the differential equation (3.3) may be introduced at each point 
of space in the local inertial tetrads, or in the global metric for curved Riemannian spaces. 

Equation (3.3) and, accordingly, the law of universal gravitation, are valid in Newtonian mechanics in a 
three-dimensional global Euclidean space and have been confirmed to a very high degree of accuracy in 
terrestrial experiments with fixed bodies and observers of free motions of various masses in space. 

Equation (3.3) may also be derived from the basic variational equation (2.8) by varying the empirical scalar 
c, both in Newtonian mechanics in Euclidean space and in volumes of empty space with R, = 0 for the 
relativistic models of comoving coordinate frames, when U = U(x’, x2, x3). 

An analogous equation, as a natural correct mathematical generalization of Eq. (3.3) in relativity 
theory, may also be postulated for Riemannian spaces as a direct generalization of Eq. (3.3) in the 
comoving coordinate frame, or after variation of the constant c occurring in AdIf4 in the term (2.6). 
(The quantity c may be treated in relativistic models as a parameter that varies in the model beyond 
the possible experimental error in measurements of c.) 

For steady fields in the observer’s frame, the solution of Eq. (3.3) in his comoving variables zl, z2, 
2, *r’, where 7’ is the observer’s proper time, must have the form U(z?, 2,2), that is, it will not 
depend on 7’. 

In classical GRT the term p(dU/&) dV4 does not occur. Hence a = g = 0 and the families of world 
lines L of test mass elements in our theory are special forms of a family of orbits formed by geodesic 
lines. 

In the formulation of the problem in GRT, as we know, gravitational forces between the planets 
are essentially ruled out; similarly, there are no such forces between moving particles in dust clouds, 
provided that there are no collisions. In addition, in the approximate theory of planetary motion 
one ignores perturbations of the properties of planetary spaces, so that one in fact treats the motions 
of the planets as test masses in the specified space (in practice-along geodesics in Schwarzschild 
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space) generated by the Sun; in particular, no allowance is made for the interactions among tlx 

planets and the effect of the oblate shape of the Sun. On the other hand. in GRT. when 1; :- cons 
and there is still no term with U * in (2.8), the equation in a volume of empty space VJ with p - !:, 
gives 

Rii - ‘&i/R = 0, or Rii= 0 ( .T ,4 ) 

These equations are not uniquely solvable. To determine the metric of the Weyl tensor (which is 

equal to the Riemann tensor), therefore, one should pick out a specific Weyl space ;~nd 
corresponding families of world lines L, permitting the absolute accelerations a to differ from zero 
This may be done by incorporating the additional conditions that must be imposed on invariants in 

the case of partial differential equations with more than one solution. 
It is also easy to deduce from our conclusions that all the tensor equations in the problem settings 

that we have described in Riemannian spaces and in Newtonian mechanics in the comoviny 

coordinate frames are the same when v = 0. 
In particular, there is a universal relation between the absolute acceleration vectors at points ot 

world lines with identical coordinates x U in GRT (Minkowski space) and in Newtonian mechanics 

(Euclidean three-dimensional space) 

dv 1 u (vdv/dT) 
ahiin =_ t 

dr 1 -v2/c2 c’( 1 -- u2/c2,* 

At each point of both spaces, with their different metrics, the three-dimensional velocities art’ 
nevertheless identical: vMin = vNew = v. 

It follows from (3.5) that in the comoving reference frames, for which v = 0 at each point 

Win = a~e~ (3.6) 

Hence it follows that in the comoving coordinate frames the gravitational fields of the absolutu 
accelerations of the forces of gravity in Euclidean three-dimensional spaces in Newtonian theorv 

and in the corresponding three-dimensional subspaces in Minkowski pseudo-Riemannian four- 
dimensional space are the same, and should be determined by the same formulae in accordance with 
Eq. (3.3), in terms of the density p(t’, .$‘, .$‘) or p(x’, x2, x’). 

The possible differences between laws of motion in relativistic and Newtonian mechanics are due 

to the different metrics, which affect the transformations from the comoving reference frame to the 

observer’s frame via the resealing algorithms of the theory of inertial navigation in its Newtonian 
versus its relativistic versions. 

It should also be noted that the scalar function lJ of the coordinates actually affects the state of 

motion of point elements in the medium (which has the dimension of velocity squared) only for 

particles (or elements of a continuous medium) that possess mass or momentum, via energy and 

gravitational force. 

4. It should be clear that the theory we have developed-and its implications-may be 

generalized to the application of model elements of continuous media with zero masses on lines I. 
for which dm = 0 but the momenta do not vanish. For example. for neutral model objects with no 
mass such as photons or neutrinos. 

Such model objects may be introduced into the theories irrespective of the subsequent physical 

complications for previously introduced model particles of the same types. 
In fact, questions of the choice of the possible fundamental spaces and time in empty space may 

be considered in isolation from the concepts of the intrinsic characteristics of the elements of model 
media, which are embedded in the geometrical spaces under consideration as mathematical sets of 

points endowed with special properties. 
Putting U* = 0 in (2.12) and cancelling out the arbitrary mass dm # 0, we see that the expression 

in brackets vanishes. 
We will now consider the construction of relativistic models of a continuous medium embedded in 

a prescribed fundamental Riemannian space whose metric is defined by some Weyl tensor, when all 
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the infinitesimal elements of the medium have masses dm = 0 but their characteristic momenta are 
p#O, say p = kl c, and their energy is er = qc*, where ki and q are given scalar factors. 

In the effective formulae (2.12) and (2.13) one can replace the velocity u and pdiJ/dT by p (p’) and 
U, with non-zero world lines L as envelopes of the vectors p; Eqs (2.14) remain formally the same 

dp/dr = -ai.& BP and aU,laT = 0 (4. I> 

If the world lines L in four-dimensional space are zero lines, then dr = 0 on L; for three- 
dimensional volumes dV3, however, one can introduce different reference frames at the points of L,, 
with dh #O and metric ds2 = c2dh2 - d12, in which the vector df satisfies the equality 

dl/dA=candlcl=const (4.2) 

In other words, the points of lines L in any reference frame in three-dimensional space in a vacuum 
will correspond to velocities (3.5) of magnitude equal to c; and for the vector p we obtain 

p=@= klc (4.3) 

The deflections of rays of light in the gravitational field will depend on the constant flq = kl . 
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